
Code Validation for Modern OS Kernels

Thomas Kittel
kittel@sec.in.tum.de

and

S. Vogl, T. Lengyel, J. Pfoh, C. Eckert

Lehrstuhl für Sicherheit in der Informatik / I20
Technische Universtität München

12/09/2014

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 1 / 26



Agenda

1 Motivation

2 Code patching mechanisms in the Linux Kernel

3 Architecture

4 Discussion

5 Conclusion

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 2 / 26



Motivation

• OS integrity is a fundamental requirement for malware detection

• Currently OS code is mainly thought to be static

• Malware research focuses on hook detection and DKOM

• Systems using UEFI and trusted boot for load time integrity are
widely employed

• Run-time code integrity is still an open problem

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 3 / 26



Limitations of current approaches

• Currently code validation is mainly comparing hashes

• Each executable page is hashed and the hashes are stored in a
(trusted) database

• The code identity is bound to the current hash

• If the hash changes, the code identity changes

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 4 / 26



Problem statement

• Kernel code in memory is not static
• Code in memory is different to the code on disk
• Load-time patching is applied while loading the code
• Run-time patching is often applied by the kernel

• Malware only requires one control flow modification (4 Bytes)

• Every single change to the code has to be validated

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 5 / 26



Related Work

• Hash-based Approaches

Copilot Calculates hashes of all kernel code
SBCFI Moves the validation component out of the guest system

• Disable run-time modifications

SecVisor Forbids writing to kernel code pages
MoRE Uses the split TLB to direct write attempts to kernel code to

another physical page
Ianus Forbids kernel modules to write to kernel code

• Load-time validation

Patagonix Partly considers load time modifications of kernel code

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 6 / 26



Load-time patching

• Relocation
• resolving of external symbols

• Alternatve Instructions
• Different instructions depending on current CPU features

• Paravirt Instructions
• Using hypervisor functionality for (para-) virtualization
• Also used on native and full-virtualized systems
• XEN even inserts unconditional jumps

• Different instructions are used on different systems

• A lot of different possible hashes to maintain

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 7 / 26



Run-time patching

• SMP Locks
• Locking mechanisms are only enabled if multiple CPUs are present
• Could also be used to replace entire functions

• Jump Labels
• optimize “highly unlikely” code branches to the point

that their normal overhead is close to zero
• patch kernel code by adding and removing branches

• Ftrace
• An ftrace call is placed at the beginning of every function
• Ftrace function calls are only enabled when requested by the user

• Future mechanisms:
• Kpatch (based on Ftrace)
• BPF (in-kernel VM)

• The integrity of each dynamic patch has to be validated separately

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 8 / 26



Example: Validation of Jump Labels

• A jump label may be disabled or enabled at any given time

• The jump target (location) of a jump label is stored in memory

• For validation the following has to be checked:

1 The kernel control datastructure (the destination)
2 The current state of the label (enabled / disabled)
3 The kernel code itself

• A change is valid only if all three are consistent and reproducable

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 9 / 26



Run-time patching is complex

• Patches happen in multiple stages to avoid race conditions

• Therefore, patching is done as follows:
• Replace the first byte with a breakpoint (CC)
• Patch all further bytes of the patch
• Patch the first byte
• Wake up all threads that hit the breakpoint

• NOP sequences are used if no replacement code is required
• The NOP sequences vary for each CPU architecture

• Keeping track of hashes is really hard

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 10 / 26



Basic concept

• Resemble the loading and patching process

• Validate legitimate changes

• Employ VMI for increased trust

• Do not trust the introspected guest

• Reference of kernel code in a trusted environment

• Validation component is executed in the host or a dedicated VM

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 11 / 26



Proposed architecture

Run-time Verifier (RV)
<page>

GuestSecure VM

Hypervisor

Preselector (PS)
locate executable pages
A

map page to module

load trusted context
 a

apply and check 
dynamic modifications
a

validate page contents 

introspection

validate codepages

Lazy Loader (LL)
 <module>

load trusted module
 a

load dependencies
 a

apply static modifications

load
recursive

dependencies

contains trusted
reference binaries

if not 
already
 loaded

provide static
context Trusted whitelist

check
whitelist

check
executable pages

• Main components
• Preselector
• Lazy Loader
• Runtime Verifier

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 12 / 26



Preselector

Run-time Verifier (RV)
<page>

GuestSecure VM

Hypervisor

Preselector (PS)
locate executable pages
A

map page to module

load trusted context
 a

apply and check 
dynamic modifications
a

validate page contents 

introspection

validate codepages

Lazy Loader (LL)
 <module>

load trusted module
 a

load dependencies
 a

apply static modifications

load
recursive

dependencies

contains trusted
reference binaries

if not 
already
 loaded

provide static
context Trusted whitelist

check
whitelist

check
executable pages

• Walks the page-tables of the monitored guest

• Identifies executable supervisor pages
• Maps pages to corresponding kernel module
• Separates code pages from executable data pages

• Calls Run-time Verifier to check code pages

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 13 / 26



Run-time Verifier

Run-time Verifier (RV)
<page>

GuestSecure VM

Hypervisor

Preselector (PS)
locate executable pages
A

map page to module

load trusted context
 a

apply and check 
dynamic modifications
a

validate page contents 

introspection

validate codepages

Lazy Loader (LL)
 <module>

load trusted module
 a

load dependencies
 a

apply static modifications

load
recursive

dependencies

contains trusted
reference binaries

if not 
already
 loaded

provide static
context Trusted whitelist

check
whitelist

check
executable pages

• Requests trusted module context from Lazy Loader

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 14 / 26



Lazy Loader

Run-time Verifier (RV)
<page>

GuestSecure VM

Hypervisor

Preselector (PS)
locate executable pages
A

map page to module

load trusted context
 a

apply and check 
dynamic modifications
a

validate page contents 

introspection

validate codepages

Lazy Loader (LL)
 <module>

load trusted module
 a

load dependencies
 a

apply static modifications

load
recursive

dependencies

contains trusted
reference binaries

if not 
already
 loaded

provide static
context Trusted whitelist

check
whitelist

check
executable pages

• Resembles linux loading process
• Loads reference binary from trusted storage (referenced by name)
• Resolves and loads dependencies
• Applies load-time modifications

• Provides static context for Run-time Verifier
• List of patchable locations together with meta information

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 15 / 26



Run-time Verifier

Run-time Verifier (RV)
<page>

GuestSecure VM

Hypervisor

Preselector (PS)
locate executable pages
A

map page to module

load trusted context
 a

apply and check 
dynamic modifications
a

validate page contents 

introspection

validate codepages

Lazy Loader (LL)
 <module>

load trusted module
 a

load dependencies
 a

apply static modifications

load
recursive

dependencies

contains trusted
reference binaries

if not 
already
 loaded

provide static
context Trusted whitelist

check
whitelist

check
executable pages

• Receives trusted module context from Lazy Loader

• Apply run-time patches to the trusted reference

• Validate differences between code and trusted reference
• integrity of the kernel state (relevant data)
• reconstruct and verify dynamic modifications

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 16 / 26



Continuous Validation

Run-time Verifier (RV)
<page>

GuestSecure VM

Hypervisor

Preselector (PS)
locate executable pages
A

map page to module

load trusted context
 a

apply and check 
dynamic modifications
a

validate page contents 

introspection

validate codepages

Lazy Loader (LL)
 <module>

load trusted module
 a

load dependencies
 a

apply static modifications

load
recursive

dependencies

contains trusted
reference binaries

if not 
already
 loaded

provide static
context Trusted whitelist

check
whitelist

check
executable pages

• While loading our system an initial validation is conducted

• Then, only write accesses to the kernel code need to be validated

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 17 / 26



Detection of malicious code

• Preselector
• Pages not related to any kernel component
• Pages containing data

• Lazy Loader
• No trusted reference binary available

• Run-time Verifier
• Detection of inconsistent kernel state
• Detection of unknown / unverifiable changes in code segments

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 18 / 26



Evaluation - Effectiveness

• This investigation is mainly based on the Linux kernel
• The implementation was tested with Linux 3.8

• We tested our system to detect 4 different linux rootkits
• All 4 rootkits were detected
• All other changes to kernel code were also reported

• No false positives during our tests
• Legitimate kernel module loading is supported

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 19 / 26



Evaluation - Performance

• Initialization required
• ca. 4 seconds in our test system

• Fast validation after the system is initialized
• 141 executable code pages in our test system
• 0.279s to validate all pages
• ca. 2ms overhead for each single page

• The test results are based on continuous code validation

• As patching is an infrequent event, event based validation would
futher improve performance

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 20 / 26



Evaluation - Security Considerations

• Our system uses untrusted (non-binding) information about the guest

• This is not an issue for our system, as:
• The page tables are derived from the virtual hardware
• Hidden kernel modules can not hide their code pages1

• The list of symbols is derived from the trusted binary representation
• The current system hardware state is derived from the hypervisor

• Paravirtualization is handled by a whitelist of referenced symbols
• For Ftrace and Jump Labels the current state of the corresponding

data structures is also checked for integrity

1Well . . .

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 21 / 26



Evaluation - Security Considerations

We ensure that:

• all detected code pages are related to known modules

• the state information in kernel data structures is consistent

• dynamic calls only use known verified functions

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 22 / 26



Sidenote — Executable data pages

• The kernels data pages are executable by default (unused NX)
• This is also the default for memory allocated with kmalloc
• Data pages can not be validated

• Lowers the requirements for code execution vulnerabilities
• The attacker can directly use an exploited buffer to execute his payload

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 23 / 26



Sidenote — Double page mapping

• Parts of the kernels code segment are also mapped to userspace
• An argument for this design decision is not to waste memory

• This violates the barrier between userspace and kernel space
• The attacker is able to extract the mapped pages from userspace
• He can calculate the virtual address of that page in the kernel
• To exploit that he only has to jump to that location

Kernel virtual address space

User virtual address space

Last .code
page (2MB)

User
pages
(4kB)

Physical
address space

kernel code

• Similar issue with kernel identity mapping found by Kemerlis et al.

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 24 / 26



Future Work

• Event-based implementation is work-in-progress

• Identify more data structures that are relevant for control flow
• Stack frame validation using the information generated by this system
• Tracepoints can call arbitrary functions when requested
• Support Live Kernel function patching
• Support for BPF (a in-kernel virtual machine)

• Extend framework for userspace code validation (White et al.)

• Extend framework for Windows guests

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 25 / 26



Conclusion

• Kernel code integrity is an open issue

• Existing systems are limited and / or incomplete

• We presented a prototype to validate dynamic code changes

• Our system is effective while having a low overhead
• Still room for improvements (event-based validation)

• We found two architectural problems in the Linux kernel

T. Kittel et al. (Lehrstuhl I20, TUM) Kernel code validation 12/09/2014 26 / 26


	Motivation
	Code patching mechanisms in the Linux Kernel
	Architecture
	Discussion
	Conclusion

